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In the diffraction of water waves by fixed bodies, the scattered waves propagate outward in the far field
and attenuate with increasing distance from the structure. ‘Cloaking’ refers to the reduction in amplitude
or complete elimination of the scattered waves. The possibility of cloaking is of both scientific and practical

Cloaking is considered here for a circular cylinder on the free surface, surrounded by one or more
additional bodies. Linearized time-harmonic motion is assumed. A numerical procedure is used to

optimize the geometry of the surrounding bodies, so as to minimize the energy of the scattered waves.
Values of the scattered energy are achieved which are practically zero at a specific wavenumber, within
the estimated numerical accuracy. This provides tentative support for the existence of perfect cloaking,
and conclusive evidence that structures can be designed to have very small values of the mean drift force.

© 2013 Elsevier Masson SAS. All rights reserved.

Dedicated to the memory of Enok Palm, an inspiring colleague and friend

1. Introduction

In the three-dimensional diffraction problem, where plane
waves are incident upon a fixed structure, scattered waves gen-
erally exist in the far field. The word ‘cloaking’ is used in various
fields of wave motion to refer to the reduction in amplitude or
complete elimination of the scattered waves. This is achieved by
modifying the shape of the structure or the properties of the sur-
rounding medium. ‘Perfect cloaking’ refers to the condition where
there are no scattered waves in any direction. The possibility of
perfect cloaking in the diffraction of water waves is of scientific in-
terest, since it is not known if this condition can be achieved with
a structure of non-zero volume on or near the free surface.

Cloaking may also have practical applications in the design of
offshore structures, particularly with respect to the mean drift
force. When scattering occurs the time-averaged second-order
pressure exerts a steady drift force on the structure, in the direction
of propagation of the incident waves. This drift force can be related
by momentum conservation to the amplitude of the scattered
waves. Thus the mean drift force is zero if there are no scattered
waves.

Energy is transported by the scattered waves as they propagate
outward on the free surface. The total scattered energy is defined
here as the integral of the rate of energy flux across a control sur-
face surrounding the structure. In an ideal fluid the mean rate of en-
ergy flux is constant, independent of the control surface. Since the
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energy is proportional to the square of the wave amplitude it fol-
lows that the amplitude is proportional to the inverse square-root
of the radius. If there are no scattered waves the scattered energy
is equal to zero. Thus the scattered energy is an appropriate mea-
sure of cloaking, analogous to the scattering cross-section in other
fields.

Cloaking a bottom-mounted circular cylinder has been consid-
ered by Porter and Newman [1-3], using an annular bed with a
variable depth to refract the waves around the cylinder. Their com-
putations show that near-zero values of the scattered energy can
be achieved by optimizing the bathymetry of the bed. However the
use of variable bathymetry may be impractical, especially in deep
water. Thus the present work considers the possibility of cloaking
a circular cylinder which is fixed on the free surface in a fluid of in-
finite depth, by surrounding it with one or more outer bodies. The
dimensions of the inner cylinder are fixed, and the scattered en-
ergy is minimized at a value of the frequency where the product of
the wavenumber and the cylinder draft is equal to one. Linearized
time-harmonic motion of an ideal fluid is assumed.

Two specific types of surrounding structures are used to cloak
the inner cylinder. The first is an array of outer cylinders which
surround the inner cylinder, as shown in Fig. 1. This configuration
was suggested by the work of Farhat et al. [4], who showed that
a large number of small circular cylinders could be used to cloak
an inner cylinder in problems governed by the two-dimensional
wave equation. The second type is a continuous ‘ring’, such as
a torus with constant cross-section or a non-axisymmetric body
with varying cross-section. This type was suggested by the results
for the arrays of cylinders, where the scattered energy is reduced
progressively by increasing the number of cylinders and decreasing
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Fig. 1. Perspective view of the structure with M = 64 outer cylindersand N = 15
optimization parameters. Only the submerged surfaces are shown, with the upper
edge of each cylinder in the plane z = 0.

their spacing. For both types it is shown that the scattered energy
can be reduced to very small values by optimizing the dimensions
and shape of the surrounding structure.

The structures are assumed to be symmetric about the planes
x = 0and y = 0, where the x-axis is in the direction of
incident-wave propagation. Symmetry about x = 0 is suggested by
reversing time (or conjugating the solution of the boundary-value
problem with complex time-dependence). Thus, for any structure
with no scattered waves, there also are no scattered waves if the
incident-wave direction is reversed. This implies that the structure
itself should be symmetric about x = 0. Symmetry abouty = 0 is
more obvious, since the incident-wave field is independent of y.

Preliminary results, which are more limited and less accurate,
have been presented in [5]. The possibility of perfect cloaking
with an axisymmetric structure was considered there. The results
in [5] suggest that this might be possible, although it would be
remarkable if perfect cloaking could be achieved with such a
structure. The results presented here, which are more accurate,
suggest that perfect cloaking can only be achieved with non-
axisymmetric structures.

The theory and computational method are described in Sec-
tions 2 and 3. Results for the two types of surrounding structures
are presented in Sections 4 and 5. These results are compared and
discussed in Section 6.

2. Theory

A fixed structure consisting of two or more rigid bodies is sit-
uated on the free surface of the fluid, which is inviscid, incom-
pressible, and extends to infinity in all horizontal directions. The
fluid depth is infinite. Cartesian coordinates X = (x, y, z) are used
with z = 0 the plane of the undisturbed free surface and z positive
upward. Harmonic time-dependence is assumed, with the velocity
potential

P (x,t) = Re {p(x)e"} . (1)

Here t represents time, w is the radian frequency, and ¢ is complex.
The potential is a solution of the Laplace equation

Vi =0 (2)
in the fluid domain. Small amplitude motions are assumed, justi-
fying the linearized free-surface boundary condition

K¢ —¢, =0 onz=0, (3)
where K = «?/g is the wavenumber and g is the gravitational

acceleration. Subscripted lower-case letters denote partial differ-
entiation. Since the fluid velocity vanishes at large depths,

V¢ - 0 asz — —oo. (4)

In the diffraction problem the structure is fixed, with plane
progressive waves of amplitude A incident upon it. The Neumann

boundary condition
$n=0 (5)

is applied on the submerged surface S of the structure. The
subscript n denotes the normal derivative, with n positive in the
direction out of the fluid domain. The potential is defined in the
form

¢ = AP + ¢s) (6)

where ¢, is the incident-wave potential and ¢s is the scattering
potential, both for unit amplitude A. Without loss of generality it
can be assumed that the incident waves propagate in the positive
x direction, and thus

¢ = g okz—ike 7)
1)
The boundary-value problem is completed by imposing the
radiation condition in the far-field, which can be expressed in the
form

& H®O) oKe—ikR—ix /4

¢s = asR — oo. (8)
*~ w V27KR

Here (R, #) are polar coordinates with x + iy = Re'. The function
H(6), which represents the amplitude of the scattered waves, is
known as the Kochin function. Following the analysis in [6], the
Kochin function can be evaluated by applying Green’s theorem,
with the result

H®) = % // ¢S _ ¢Si eKz+il((xc059+ysin9) ds. (9)
g S ! an

The normalized rate of scattered energy is given by the dual
relations

2
E= i/ |[H(®)|?d6 = —2Im {H(0)}. (10)
27 0

The equivalence of these two relations follows from Green's
theorem, as shown in [6], or more physically from the conservation
of energy applied to the total potential (6). In other types of wave
diffraction this equivalence is known as the optical theorem.

If the structure is symmetric about x = 0, the symmetric and
anti-symmetric components of the potential ¢s satisfy Neumann
boundary conditions on the body where the normal derivatives
are real and imaginary, respectively. If there is no scattered
energy these potentials vanish at infinity faster than a radiated
wave, and satisfy the homogeneous boundary condition (3) on
the free surface. It follows that the symmetric and anti-symmetric
components of the potential are respectively real and imaginary
throughout the fluid domain, assuming uniqueness. This property
has important effects on the mean second-order pressure and drift
force, as will be noted below.

3. Computational method

Our objective is to surround a prescribed inner body with one
or more outer bodies which are optimized to minimize the scat-
tered energy of the combined structure. The inner body is a circu-
lar cylinder with radius 0.5 m and draft 1.0 m. The optimization
is performed at the wavenumber K = 1, using non-dimensional
parameters normalized by the unit draft. The energy E is normal-
ized by the corresponding value for the uncloaked cylinder, E; =
0.0727344. The energy ratio E /Ey is defined in this manner.

The computational approach combines a three-dimensional ra-
diation-diffraction code based on the boundary-integral-equation
method (BIEM) with a multi-variate optimization code (PRAXIS).
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The BIEM code, a modified version of the program WAMIT [7], eval-
uates the scattered energy for a structure with specified geom-
etry which is defined parametrically. PRAXIS, which is described
in [8], searches for optimum values of the geometric parameters
such that the scattered energy is minimized.

In the BIEM the unknown potential is the solution of an
integral equation over the boundary surface of the fluid domain,
based on Green’s theorem. The free-surface Green function is used
to reduce the computational domain to the body surface (the
submerged surface of the structure). The geometry of the body
surface is mapped analytically to a set of square domains in a two-
dimensional parametric space, and the potential is represented in
these domains by continuous B-splines. A Galerkin method is used
to reduce the integral equation to a linear system, which is solved
by Gaussian elimination. Further details are given in [7,9]. The
scattered energy E is evaluated using the two alternative values in
(10), and the maximum of these two values is used as the objective
function.

PRAXIS iterates to find optimum values of the geometric
parameters which minimize the objective function. Typically a
large number of iterations is required, on the order of 1000 for
the results presented here. In many cases it is necessary to re-start
the optimization with modified initial values of the parameters, to
avoid false convergence.

In the simplest cases presented here there are three geometric
parameters. For the array of circular cylinders these include their
radius r, draft d, and the radius Ry of their axes from the center
of the inner cylinder, if these parameters are the same for all of the
outer cylinders. For the torus the corresponding parameters are the
major and minor semi-axes of the elliptical cross-section and the
radius. For more general geometries the number of parameters N
is increased. As expected, the minimum value of E is reduced by
increasing N.

The principal restrictions on the computational accuracy are in
the BIEM, due to the discretization used in the Galerkin method
and in the integration of the solution over the body surface, and
also due to the evaluation of the free-surface Green function and its
derivatives. The discretization accuracy is controlled by increasing
the panel subdivisions in the parametric space, and judging the
accuracy of the results from convergence tests. The accuracy of
the numerical integrations is controlled by increasing the number
of panels, and by using adaptive quadratures for the Rankine
(singular) part of the Green function. The accuracy of the Green
functions depends on the algorithms used for their evaluations, as
discussed below.

The results presented in [5] were obtained using a single-
precision BIEM code which was adapted from the standard
version of WAMIT [7]. The absolute accuracy of the hydrodynamic
parameters including the scattered energy is estimated to be
between 3 and 5 decimals. The minimum values of E/E, achieved
with this code are on the order of 1074, From the viewpoint of
practical engineering applications these values are effectively zero,
but for the scientific objective of establishing the existence of
perfect cloaking they are too large to be conclusive.

In order to extend the accuracy of the present work a double-
precision BIEM program has been developed from WAMIT. A
special subroutine is used to evaluate the free-surface Green
function and its derivatives, based on the integral representations
and expansions in [10]. This achieves absolute accuracies of
approximately 12D (decimals) for the Green function and 11D
for its first derivatives. Test computations have been made for
the added mass and damping of a floating hemisphere. For zero-
and infinite-frequencies, where the surge and heave added-mass
coefficients are equal to half of the displaced fluid mass, the results
are correct to about 12D. Convergence tests at the wavenumber
K = 1indicate that the accuracy of the added mass and damping is
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Fig. 2. Plan view of the structures with M = 4, 8, 16, 32, 64 outer cylinders and
N = 3 optimization parameters as shown in Table 1. The incident waves propagate
in the x-direction, which is horizontal in the above figures.
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Fig. 3. Scattered energy for the uncloaked cylinder (M = 0) and the five optimized
structures shown in Fig. 2.

between 9D and 11D. Similar accuracy is suggested by comparison
of the two alternative equations (10) for the scattered energy. The
results presented below are consistent with these estimates, with
minimum values of the energy ratio E /Eq of order 1075,

4. Arrays of circular cylinders

In this section we consider structures where the inner cylinder
is surrounded by an array of M outer cylinders. In the most general
case each outer cylinder has a radius r,, and draft d,, with its
vertical axis at (Rp, 6,), where (m = 1,2,..., M). The entire
structure is fixed on the free surface. Five different arrays are
considered with M = (4, 8, 16, 32, 64). Optimum values of the
parameters (1, dm, R, Ory) are computed to minimize the energy.
Since the structures are assumed to be symmetric about x = 0 and
y = 0the maximum number of independent parametersisN = M.

First we consider the simplest case where the parameters r,, =
r, d, = d are the same for all of the cylinders, which are uniformly
spaced around a circle of radius Ry as shown in Fig. 2. In this
case there are N = 3 optimization parameters. The results are
summarized in Table 1. The scattered energy ratio decreases as the
number of cylinders M is increased. The minimum value obtained
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Table 1
Optimized parameters of the arrays where the outer cylinders all have the same
dimensions, with uniform spacing (N = 3).

M r d Rg E E/EO
4 0.2989 0.5857 2.2091 0.0214 0.2938
8 0.2934 0.6888 2.2032 0.0018 0.0252

16 0.1963 0.6920 2.1579 0.0014 0.0196

32 0.1309 0.6715 2.0991 0.0009 0.0125

64 0.0847 0.6007 2.0128 0.0005 0.0066
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Fig. 4. Scattered energy ratios of the structures with M = 4, 8, 16, 32, 64 outer
cylinders. N is the number of optimization parameters.

is E/Ey = 0.0066 for M = 64. Fig. 3 shows the scattered energy E
for a range of wavenumbers. The results for N > 8 are practically
the same, with very small values at K = 1 and less energy in the
interval 0.7 < K < 1.2 compared to the uncloaked inner cylinder.
Thus broadband cloaking is achieved, within this range of
wavenumbers.

More general configurations follow by considering different
values of the optimization parameters for each cylinder, defined
by the Fourier series

'm J ajm
dm :Z bim | c0s2( — 10, (m=1,2,...,M/4). (11)
m =1 \Gjm

Except as noted below, the angles 6,, are uniformly spaced around

a circle, with
b4
O = M(Zm —-1).

The number of optimization parametersisN = 3], where] < M /4.

Fig. 4 shows the optimized energy ratio for different values of
M and N. The scattered energy is reduced substantially by varying
the parameters for each cylinder; adding only the Fourier term
j = 2in(11) reduces E /E, to between 10~* and 1077, depending
on the number of cylinders. For the array with 64 cylinders and 15
optimization parameters, E/Ey = 1.8 x 1072, A perspective view
of this structure is shown in Fig. 1. (The energy ratio for M = 32,
N = 15 is smaller, with the value E/E, = 1.5 x 1078, but this
is considered to be an anomaly due to the limits of the numerical
accuracy.)

Fig. 5 shows the variation of the parameters (1, dp,, Riy) around
one quadrant of the array, for the best configurations with different
numbers of cylinders. The most significant variation is for the
depth d, which is relatively large at the up-wave and down-wave
ends of the array and small on the sides, as shown in Fig. 1.
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Fig. 5. Azimuthal variation of the cylinder dimensions r, d, Ry. The symbols
indicate the angular position of the cylinders in each array. The number of
optimization parameters is the maximum for each array shown in Fig. 4. Note that
the scale is different in each figure.
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Fig. 6. Scattered energy ratios of the structures with axisymmetric and non-
axisymmetric rings. N is the number of optimization parameters. For N = 3 both
types of ring reduce to a torus with semi-elliptical sections.

One additional generalization which can be included is
nonuniform azimuthal spacing between the outer cylinders. If the
angles 6,, are defined by Fourier series analogous to (11), N = 4.
The only cases where this is relatively advantageous are for 4 and
8 cylinders, as shown in Fig. 4.

Similar results have been obtained from limited computations
with other types of bodies, and for a fluid of finite depth.
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Fig. 7. Cross-sections of the axisymmetric rings. The number of optimization parameters N is shown for each section.
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Fig. 8. Perspective view of the non-axisymmetric structure with elliptical cross-
sectionsand N = 15 optimization parameters. In this case there are 5 Fourier modes
in the azimuthal direction. One quadrant is omitted for clarity.

25r
S =
===
15
: Rout
[ === R,
Ux Rin
I d
0.5
e
0 L
0 30 60 90
0

Fig.9. Azimuthal variation of the radii of the outer and inner waterlines and depth
d for the non-axisymmetric ring shown in Fig. 8. The dashed line is the radius of the
axis.

5. Continuous rings

In this section we consider structures where the inner cylinder
is surrounded by a continuous ring. The simplest example is a torus
with semi-elliptical cross-sections defined by

R =Ry + bsiny, (12)
z=—dcosy. (13)

Here (R, z) are cylindrical coordinates with R being the radius from
the vertical z-axis. The parametric coordinate i varies between
—m /2 on the inner waterline and 7 /2 on the outer waterline, with
Y = 0 at the deepest point of the section. The three optimization
parameters include the radius Ry of the toroidal axis, the horizontal
semi-axis (half-beam) b, and the vertical semi-axis (depth) d.
More general rings are defined using Fourier series to represent
both the dependence on the parametric coordinate v, and the
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Fig. 10. Amplitude of the free-surface elevation for the structure shown in Fig. 8
at & = (0, 30, 60, 90) degrees from the x-axis, normalized by the amplitude A
of the incident waves. The gaps in the curves correspond to the segments of the
free surface between the inner and outer radii of the ring, as shown in Fig. 9. The
continuous dashed line is the amplitude for the uncloaked cylinder, at 6 = 0.

azimuthal variation depending on 6:

1
R = ZR,-COSZ(i - 10

i=1

1T s Je
+ > | D sysinjy + ) Gycosjy [cos2(i— 16, (14)
i=1 | j=1 Jj=1
1
zZ=— ZdiCOSZ(i—l)G cos Y. (15)
i=1

The number of optimization parameters (R;, S, Gj, d;) iSN = I X
(Js+J-+2). Two specific cases will be considered: (a) axisymmetric
rings (I = 1) with (J = J.) and (N = 4, 6, 8, 10, 12, 14, 16), and
(b) non-axisymmetric rings with elliptical sections where (J; =
1,Jc = 0)and (N = 3I = 3,6,9, 12, 15). Optimized values of
the energy ratio are shown for both cases in Fig. 6.

Fig. 7 shows the cross-sections of the axisymmetric rings. For
(N > 3) these have a substantial inclination, radially inward for
increasing depth, compared to the vertical axis of the semi-ellipse
(N = 3). The sections are rather extreme for (N > 4) and give rel-
atively small reductions of the energy. The smallest value E/Ey =
1.7 x 107% is achieved with N = 16.

The energy ratios of the non-axisymmetric rings are substan-
tially smaller, as shown in Fig. 6. The smallest value E/E; = 5.2 x
102, which is obtained with the maximum number of optimiza-
tion parameters (N = 15), is within the estimated limit of compu-
tational accuracy. This configuration is shown in Figs. 8 and 9.
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Fig. 11. Horizontal forces acting on the structure shown in Fig. 8 including the first-order exciting force (a) and second-order mean drift force (b). The dashed lines are the

forces acting on the uncloaked cylinder.

Comparison of the results in Fig. 6 suggests that perfect
cloaking may be possible, but only with a non-axisymmetric ring.
Notwithstanding this hypothesis, surprisingly small values of the
scattered energy can be achieved with axisymmetric structures.

Fig. 10 shows the amplitude of the scattered waves for the
structure in Fig. 8, at K = 1. The waves between the cylinder
and the surrounding ring are relatively large. Outside the ring they
decay rapidly with increasing radius, relative to the uncloaked
cylinder. Since the real part of the potential is symmetric about
x = 0 and the imaginary part is anti-symmetric, the amplitude
of the scattered waves is the same in all four quadrants.

The first-order exciting force is shown in Fig. 11(a). The separate
components acting on the inner cylinder and outer ring are shown
as well as the total force on the complete structure. By comparison
with the uncloaked cylinder, the total force is increased for
long wavelengths (K < 1) and decreased substantially for shorter
waves. The separate components are relatively large but with
opposite phases, and the total force is close to zero near K = 1.47.
For K < 1 the force on the inner cylinder is practically the same as
for the uncloaked case. At K = 0.98 the force on the outer ring is
close to zero.

The drift force in Fig. 11(b) is similar to the scattered energy,
as expected, with very small values near K = 1. It is interesting
to note that the separate components have simple zeros close to
this point, crossing in opposite directions. Since the symmetric
and anti-symmetric components of the potential are respectively
real and imaginary, there is no anti-symmetric component of
the second-order mean pressure and no drift force acting on
symmetrical sub-elements of the body. The total drift force is
positive (or zero); within the accuracy of the plot it appears to have
a second-order zero.

6. Conclusions

Examples of broadband cloaking have been demonstrated for a
circular cylinder in deep water. Two types of surrounding struc-
tures are used, an array of smaller cylinders and a continuous ring.
In both cases the total scattered energy is reduced substantially for
wavenumbers near K = 1. This may have practical applications,
particularly to reduce the mean drift force on offshore structures.

The most interesting question from the scientific standpoint is
whether perfect cloaking can be achieved. It is generally assumed
that diffraction by a fixed structure involves non-zero scattered
waves which propagate outward in the far field. This phenomenon
is intuitively obvious. The possibility that structures exist for which

there are no scattered waves, even at one wavenumber, may be
considered surprising if not impossible.

The present work is based on a program with greater accu-
racy thanis generally required for normal engineering analysis. The
standard version of the radiation-diffraction code WAMIT, which
was used for the earlier work reported in [5], has a maximum accu-
racy of 4 or 5 decimals. This was not sufficient to show significant
differences in the minimum scattered energy of axisymmetric and
non-axisymmetric structures. The extended program used here is
considered to have an absolute accuracy for the present results on
the order of 9 or 10 decimals. The comparison in Fig. 6 shows a sub-
stantial reduction in the minimum scattered energy for structures
which vary in the azimuthal direction and suggests that perfect
cloaking can only be achieved with non-axisymmetric structures.

The minimum computed value of the scattered energy for the
cylinder arrays in Section 4 is E = 1.1 x 10~°. The minimum value
for the continuous rings in Section 5 is E = 3.8 x 107 '°, These
are evidently at or near the limits of the computational accuracy
and cannot be distinguished from perfect cloaking. They provide
tentative numerical evidence for the existence of perfect cloaking.
The establishment of a rigorous analytic proof to support (or refute)
this statement is a challenging goal for future research.
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